Abstract
The dynamical behaviour of a two neuron netlet of excitation and inhibition with a transmission delay is investigated. It is shown that in the absence of delay, the netlet relaxes to the trivial resting state. If the delay is of sufficient magnitude, the network is excited to a temporally periodic cyclic behaviour. The analytical mechanism for the onset of cyclic behaviour is through a Hopf-type bifurcation. Approximate solusions to the periodic output of the netlet is calculated; stability of the temporally periodic cycle is investigated. It is shown that the bifurcation is supercritical. A related discrete version of the continuous time system is formulated. It is found that the discrete system also displays a cyclic behaviour. Results of a number of computer simulations are displayed graphically; the article concludes with a brief neurobiological discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.