Abstract

This paper focuses on the delay induced Hopf bifurcation in a dual model of Internet congestion control algorithms which can be modeled as a time-delay system described by a one-order delay differential equation (DDE). By choosing communication delay as the bifurcation parameter, we demonstrate that the system loses its stability and a Hopf bifurcation occurs when communication delay passes through a critical value. Moreover, the bifurcating periodic solution of the system is calculated by means of the perturbation method. Discussion of stability of the periodic solutions involves the computation of Floquet exponents by considering the corresponding Poincaré–Lindstedt series expansion. Finally, numerical simulations for verifying the theoretical analysis are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.