Abstract

ABSTRACTThis paper investigates the issue of stability and bifurcation for a delayed fractional neural network with three neurons by applying the sum of time delays as the bifurcation parameter. Based on fractional Laplace transform and the method of stability switches, some explicit conditions for describing the stability interval and emergence of Hopf bifurcation are derived. The analysis indicates that time delay can effectively enhance the stability of fractional neural networks. In addition, it is found that the stability interval can be varied by regulating the fractional order if all the parameters are fixed including time delay. Finally, numerical examples are presented to validate the derived theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.