Abstract

Although Brugada syndrome revolves around reduced net depolarizing force, the electrophysiological mechanisms of its defining features (right precordial ST-segment elevation and ventricular tachyarrhythmias) remain unresolved. Two proposed mechanisms are (1) right ventricular (RV) conduction delay and (2) selective and significant RV subepicardial action potential shortening. Both mechanisms must cause disparate contractile changes: delay in RV contraction and reduction of contractile force, respectively. We aimed to establish the electrophysiological mechanism of Brugada syndrome by studying the timing and force of RV contraction. Using tissue Doppler echocardiography, we studied how these contractile variables change on induction of the characteristic ST-segment changes of Brugada syndrome by flecainide challenge. Accordingly, we studied patients in whom flecainide induced these changes (inducible) and those in whom these changes were not induced (control). We found that (1) the occurrence of a positive response (coved-type ST elevation) after flecainide coincides with delay in the onset of contraction between the RV and left ventricle (LV); (2) the extent of contraction delay between RV and LV correlates with the magnitude of ST elevation; and (3) RV ejection time (duration of RV ejection phase) shortens as the Brugada ECG pattern emerges. These results indicate that both proposed mechanisms of Brugada syndrome may be operative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.