Abstract
Delay coordinates are a widely used technique to pass from observations of a dynamical system to a representation of the dynamical system as an embedding in Euclidean space. Current proofs show that delay coordinates of a given dynamical system result in embeddings generically with respect to the observation function (Sauer et al., 1991). Motivated by applications of the embedding theory, we consider flow along a single periodic orbit where the observation function is fixed but the dynamics is perturbed. For an observation function that is fixed (as a nonzero linear combination of coordinates) and for the special case of periodic solutions, we prove that delay coordinates result in an embedding generically over the space of vector fields in the Cr−1 topology with r≥2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.