Abstract
<span lang="EN-US">In many signal processing applications, multiplier is an important functional block that plays a crucial role in computation. It is always a challenging task to design the delay optimized multiplier at the system level. A new and delay-efficient structure for the 4:3 counter is proposed by making use of a two-bit reordering circuit. The proposed 4:3 counter along with the 7:3 counter, full adder (FA), and half adder (HA) circuits are employed in the design of delay-efficient 8-bit and 16-bit Wallace tree multipliers (WTMs). Using Xilinx Vivado 2017.2, the designed circuits are simulated and synthesized by targeting the device ‘xc7s50fgga484-1’ of Spartan 7 family. Further, in terms of lookup table (LUT) count, critical path delay (CPD), total on-chip power, and power-delay-product (PDP), the performance of the proposed multiplier circuit is compared with the existing multipliers.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.