Abstract
Non-linear gain compression is well-known to play an important role in the dynamics of short-pulse generation and propagation in semiconductor lasers. Here, a previously reported delay differential equation model for passively mode-locked semiconductor lasers is enhanced with nonlinear gain compression terms in gain and absorber sections. We report the modified model equations and show the impact in gain/absorption dynamics with respect to the original model. In addition, we perform an extended comparison between the enriched delay differential equation model applied on a ring cavity and a travelling wave model applied on an equivalent Fabry-Perot cavity, highlighting the limits of quantitative and qualitative agreement between the two approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.