Abstract

Integration of wind farm with power system introduces nonlinearity and complexity of the power system, which deteriorates the performance of a wide area damping controller (WADC). A WADC is designed in this paper for wind energy conversion system (WECS) integrated power system taking the communication latency and communication failure of the wide area measurement system (WAMS) into consideration. Apart from communication delay and communication failure, the effect of saturation is also considered in this paper. A state feedback stabilizing controller is designed using linear matrix inequality (LMI) platform. The control signal chosen here is combination of local and global signal to ensure stability during communication failure. The inter-area oscillation is reduced by controlling the reactive power of the wind farm. The effectiveness of the controller developed is verified using a WECS integrated modified 11-bus test system and modified IEEE 39-bus test system. The simulation results show that the designed controller guarantees stability and also can eliminate inter-area oscillations effectively of a WECS integrated power system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.