Abstract

We are concerned with stability of numerical methods for delay differential systems of neutral type. In particular, delay-dependent stability of numerical methods is investigated. By means of the H-matrix norm, a necessary and sufficient condition for the asymptotic stability of analytic solution of linear neutral differential systems is derived. Then, based on the argument principle, sufficient conditions for delay-dependent stability of Runge–Kutta and linear multi-step methods are presented, respectively. Furthermore, two algorithms are provided for checking delay-dependent stability of analytical and numerical solutions, respectively. Numerical examples are given to illustrate the main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.