Abstract

In this article, the issue of exponential stability (ES) is investigated for a class of switched stochastic neural networks (SSNNs) with proportional delay (PD). The key feature of PD is an unbounded time-varying delay. By considering the comparison principle and combining the extended formula for the variation of parameters, we conquer the difficulty in consideration of PD effects for such networks for the first time, where the subsystems addressed may be stable or unstable. New delay-dependent conditions with respect to the mean-square ES of systems are established by employing the average dwell-time (ADT) technique, stochastic analysis theory, and Lyapunov approach. It is shown that the acquired minimum average dwell time (MADT) is not only relevant to the stable subsystems (SSs) and unstable subsystems (USs) but also dependent on the decay ratio (DR), increasing ratio (IR), as well as PD. Finally, the availability of the derived results under an average dwell-time-switched regulation (ADTSR) is illustrated through two numerical simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.