Abstract

This paper focuses on delay-dependent robust fault detection (RFD) problem for continuous-time Markovian jump systems (MJSs) with partly unknown transition rates and time-varying delay. Free-connection weighting matrices are firstly addressed to robust fault detection filter design, which reduce the conservatism caused by fixed-connection weighting matrices. By considering Lyapunov stability theory, new delay-dependent stochastic stability criteria are eatablished in terms of linear matrix inequalities (LMIs). Based on this, sufficient conditions are given and proved to guarantee the existence of the robust fault detection filter system. Furthermore, an optimization design approach is derived with an improved cone complementarity linearization algorithm. Finally, a simulation example is given to show that the designed robust fault detection filter can detect the faults sensitively, and also respond robustly to unknown disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.