Abstract

This paper investigates a class of delayed cellular neural networks (DCNN) with time-varying delay. Based on the Lyapunov–Krasovski functional and integral inequality approach (IIA), a uniformly asymptotic stability criterion in terms of only one simple linear matrix inequality (LMI) is addressed, which guarantees stability for such time-varying delay systems. This LMI can be easily solved by convex optimization techniques. Unlike previous methods, the upper bound of the delay derivative is taken into consideration, even if larger than or equal to 1. It is proven that results obtained are less conservative than existing ones. Four numerical examples illustrate efficacy of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.