Abstract

Global exponential stability of a class of cellular neural networks with multi-proportional delays is investigated. New delay-dependent sufficient conditions ensuring global exponential stability for the system presented here are related to the size of the proportional delay factor, by employing matrix theory and Lyapunov functional, and without assuming the differentiability, boundedness and monotonicity of the activation functions. Two examples and their simulation results are given to illustrate the effectiveness of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call