Abstract

This paper is concerned with a class of nonlinear uncertain switched networks with discrete time-varying delays . Based on the strictly complete property of the matrices system and the delay-decomposing approach, exploiting a new Lyapunov-Krasovskii functional decomposing the delays in integral terms, the switching rule depending on the state of the network is designed. Moreover, by piecewise delay method, discussing the Lyapunov functional in every different subintervals, some new delay-dependent robust stability criteria are derived in terms of linear matrix inequalities, which lead to much less conservative results than those in the existing references and improve previous results. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.