Abstract
Time division multiple access (TDMA) based medium access control (MAC) protocols can provide QoS with guaranteed access to the wireless channel. However, in multi-hop wireless networks, these protocols may introduce scheduling delay if, on the same path, an outbound link on a router is scheduled to transmit before an inbound link on that router. The total scheduling delay can be quite large since it accumulates at every hop on a path. This paper presents a method that finds conflict-free TDMA schedules with minimum scheduling delay. We show that the scheduling delay can be interpreted as a cost, in terms of transmission order of the links, collected over a cycle in the conflict graph. We use this observation to formulate an optimization, which finds a transmission order with the min-max delay across a set of multiple paths. The min-max delay optimization is NP-complete since the transmission order of links is a vector of binary integer variables. We devise an algorithm that finds the transmission order with the minimum delay on overlay tree topologies and use it with a modified Bellman-Ford algorithm, to find minimum delay schedules in polynomial time. The simulation results in 802.16 mesh networks confirm that the proposed algorithm can find effective min-max delay schedules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.