Abstract

Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to rapid changes in the environment. The non-stationary fading process can be characterized by assuming local stationarity for a region with finite extent in time and frequency. For this finite region the wide-sense stationarity and uncorrelated-scattering (WSSUS) assumption holds approximately and we are able to calculate a time and frequency dependent local scattering function (LSF). In this paper, we estimate the LSF from a large set of measurements collected in the DRIVEWAY'09 measurement campaign, which focuses on scenarios for intelligent transportation systems. We then obtain the time-frequency-varying power delay profile (PDP) and the time-frequency-varying Doppler power spectral density (DSD) from the LSF. Based on the PDP and the DSD, we analyze the time-frequency-varying root mean square (RMS) delay spread and the RMS Doppler spread. We show that the distribution of these channel parameters follows a bi-modal Gaussian mixture distribution. High RMS delay spread values are observed in situations with rich scattering, while high RMS Doppler spreads are obtained in drive-by scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.