Abstract

This paper introduces a new priority mechanism in discrete-time queueing systems that compromises between first-come-first-served (FCFS) and head-of-line priority. In this scheduling discipline—which we dubbed slot-bound priority—customers of different priority classes entering the system during the same time-slot are served in order of their respective priority class. Customers entering during different slots are served on a FCFS basis. In this paper we study the delay in an N-class discrete-time queueing system under slot-bound priority. General independent arrivals and class-specific general service time distributions are assumed. Expressions for the probability generating function of the delay of a random type-j customer are derived, from which the respective moments are easily obtained. The tail behaviour of these distributions is analyzed as well, and some numerical examples show the effect slot-bound priority can have on the performance measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.