Abstract

We present an algorithmic framework for producing Delaunay triangulations of manifolds. The input to the algorithm is a set of sample points together with coordinate patches indexed by those points. The transition functions between nearby coordinate patches are required to be bi-Lipschitz with a constant close to 1. The primary novelty of the framework is that it can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. The output is a manifold simplicial complex that is the Delaunay complex of a perturbed set of points on the manifold. The guarantee of a manifold output complex demands no smoothness requirement on the transition functions, beyond the bi-Lipschitz constraint. In the smooth setting, when the transition functions are defined by common coordinate charts, such as the exponential map on a Riemannian manifold, the output manifold is homeomorphic to the original manifold, when the sampling is sufficiently dense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.