Abstract
Delaunay tessellation is applied for the first time in the analysis of protein structure. By representing amino acid residues in protein chains by C alpha atoms, the protein is described as a set of points in three-dimensional space. Delaunay tessellation of a protein structure generates an aggregate of space-filling irregular tetrahedra, or Delaunay simplices. The vertices of each simplex define objectively four nearest neighbor C alpha atoms, i.e., four nearest-neighbor residues. A simplex classification scheme is introduced in which simplices are divided into five classes based on the relative positions of vertex residues in protein primary sequence. Statistical analysis of the residue composition of Delaunay simplices reveals nonrandom preferences for certain quadruplets of amino acids to be clustered together. This nonrandom preference may be used to develop a four-body potential that can be used in evaluating sequence-structure compatibility for the purpose of inverted structure prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.