Abstract

ABSTRACTDelamination of montmorillonite (Na-MMT) is an outstanding property of the dispersed MMT particles. Na-MMT particles delaminated in water and isopropanol under shear forces have been studied in this work. The difference in the intercalation and delamination of Na-MMT by water and isopropanol was studied by molecule dynamic simulation and experiment. Molecule dynamic simulation was carried out on Material Studio (MS) 8.0. The experimental study was performed on a Na-MMT through the measurements of Stokes size, optical size, scanning electron microscope, atomic force microscope, and dynamic molecule simulation. The results demonstrated that under the effect of interlayer hydration, the Na+ that resides near the siloxane surface was moved to the middle plane of interlayer space, and the interlayer spacing was opened 1.38A. Compared with the interlayer hydration, the interlayer spacing was increased only a little (0.32A) treated by isopropanol; meanwhile, the interlayer sheets were joined together by isopropanol molecule. Because of that the effect of water and isopropanol in the interlayer of Na-MMT was totally different, the Na-MMT particles were indeed delaminated into plate-like super fine particles in water instead of in isopropanol, and delamination was closely correlated with shear force only if hydration was occurred in the interlayer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.