Abstract

The simulation of the delamination process in laminated composite plates is quite complex and requires advanced finite element modeling techniques. Failure analysis tools must be able to predict initiation, size and propagation of delamination process. This paper presents the p-convergent partial discrete-layer elements with the virtual crack closure technique (VCCT) for the delamination analysis of laminated composite plates. The proposed element can be formulated by the suitable dimensional reduction from three-dimensional solid to two-dimensional plate. It is assumed that the piecewise linear variation of in-plane displacements and the constant value of out-of-plane displacements across the thickness. The higher-order approximation based on integrals of Legendre polynomials is used to define displacement fields. The three-dimensional VCCT is also slightly modified to incorporate with the proposed elements to estimate the energy release rate. The initiation of delamination occurs when the energy release rate for a displacement increment is same as the critical energy release rate corresponding to fracture toughness. The approach is to use a fracture mechanics criterion, but to avoid the complex moving mesh technique. At first, the validation and characteristic of the proposed elements are investigated on isotropic plates and orthotropic laminated plates, compared with referenced values. Then for fracture analysis, the efficiency of proposed approach is demonstrated with the help of additionally two problems such as the double-cantilever-beam test and the orthotropic laminated square plate with interior delamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call