Abstract

A cohesive interface model based on a master curve is proposed for the analysis of delamination in paperboard under various loading, unloading, and reloading conditions. The model is thermodynamically consistent and considers the effects of elasticity, plasticity, and damage. The proposed model is verified by comparing its predictions with experimental data obtained from multiple loading–unloading–reloading cycle experiments using a split double cantilever beam specimen. The results show that the model can predict the cyclic behavior of shear loading and provide insight into the damage evolution associated with different loading paths by analyzing the shear stress distribution in the fracture process zone. The model’s calibration process requires monotonic normal and shear loading data but only cyclic normal loading data. Additionally, the model accounts for the paperboard’s fiber–fiber friction and normal dilatation due to shear loading. In total, nine parameters are needed to calibrate the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call