Abstract

A numerical method based on the Refined Zigzag Theory (RZT) to model delamination in composite laminated plate/shell structures is presented. The originality of this method is the use of 4-noded quadrilateral plate finite elements whit only seven variables per node to discretize the plate/shell geometry. The ability to capture the relative displacement between consecutive layers in fracture mode II and III is the more important advantage of this element, denoted QLRZ [1].A continuum isotropic damage model [2] is used to model the mechanical behavior of the plies. The material non-lineal problem is solved with the modified Newton–Raphson method.The RZT plate theory, the QLRZ finite element and the isotropic damage model are described in this work. Also, the implicit integration algorithm is presented. The performance of the numerical model is analyzed by studying the delamination in a rectangular plate for two different laminates, using the 3D analysis as the reference solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.