Abstract

This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the laminate by reversibly clamping its boundaries. In this paper, a numerical analysis of the sensitivity of the local-IET to the delamination damage mechanism is conducted. Firstly, a Finite Element (FE) model of the local-IET test is determined through experimental investigations on undamaged composite laminates, which cover a wide range and are made of glass or carbon fibers, through resin infusion or pre-preg consolidation and with unidirectional or fabric textures. The vibrational response of a glass fiber composite with local delamination is then assessed with the local-IET. By modeling the delamination in the simulation environment, the effectiveness of the FE model in replicating the vibrational response, even in the presence of delamination, is shown through a comparison with the experimental results. Finally, the FE model is exploited to perform a sensitivity analysis, showing that the technique is able to detect the presence of delamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.