Abstract

Background: Nephrotic syndrome (NS) is associated with kidney podocyte injury and may occur as part of thyroid autoimmunity such as Graves’ disease. Therefore, the present study was designed to ascertain if and how podocytes respond to and regulate the input of biologically active thyroid hormone (TH), 3,5,3'-triiodothyronine (T3); and also to decipher the pathophysiological role of type 3 deiodinase (D3), a membrane-bound selenoenzyme that inactivates TH, in kidney disease. Methods: To study D3 function in healthy and injured (PAN, puromycin aminonucleoside and LPS, Lipopolysaccharide-mediated) podocytes, immunofluorescence, qPCR and podocyte-specific D3 knockout mouse were used. Surface plasmon resonance (SPR), co-immunoprecipitation and Proximity Ligation Assay (PLA) were used for the interaction studies. Findings: Healthy podocytes expressed D3 as the predominant deiodinase isoform. Upon podocyte injury, levels of DIO3 transcript and D3 protein were dramatically reduced both in vitro and in the LPS mouse model of podocyte damage. D3 was no longer directed to the cell membrane, it accumulated in the Golgi and nucleus instead. Further, depleting D3 from the mouse podocytes resulted in foot process effacement and proteinuria. Treatment of mouse podocytes with T3 phenocopied the absence of D3 and elicited activation of αvβ3 integrin signaling, which led to podocyte injury. We also confirmed presence of an active thyroid stimulating hormone receptor (TSH-R) on mouse podocytes, engagement and activation of which resulted in podocyte injury. Interpretation: The study provided a mechanistic insight into how D3-αvβ3 integrin interaction can minimize T3-dependent integrin activation, illustrating how D3 could act as a renoprotective thyrostat in podocytes. Further, injury caused by binding of TSH-R with TSH-R antibody, as found in patients with Graves’ disease, explained a plausible link between thyroid disorder and NS. Funding: Funding support from American Thyroid Association (ATA) to NJT (ATA-2018-050.R1). Declaration of Interest: Jochen Reiser has patents on novel strategies for kidney therapeutics and stands to gain royalties from their commercialization. He is the co-founder of Walden Biosciences (Cambridge, MA, USA), a biotechnology company in which he has financial interest, including stock. Other authors have nothing to disclose and there are no competing or conflicting interests. Ethical Approval: All animal experiments were carried out according to the NIH’s Guide for the Care and Use of Experimental Animals (National Academies Press, 2011), and approved by the Institutional Animal Care and Use Committee (IACUC) at Rush University (Chicago, Illinois, USA). Human biopsy kidney sections from healthy donors and patients with FSGS, DN and MCD were procured in accordance with guidelines on human research and with approval of the Institutional Review Board of Rush University Medical Center (Chicago, Illinois, USA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.