Abstract

Selected instrumental techniques [dilatometry, thermogravimetry – mass spectrometry (TG‐MS), and variable temperature – diffuse reflectance infrared Fourier transform spectroscopy (VT‐DRIFTS)] have been used to investigate the role of moisture in the rehydroxylation reaction which causes expansion and mass gain in fired clay ceramics. The temperature range over which adsorbed water molecules and structural hydroxyl groups are desorbed from fired clay ceramic as it is reheated, and the nature of the structural hydroxyls that are formed as the ceramic is cooled and then held under controlled conditions have been explored. The mass chromatogram for m/z = 18, supported by VT‐DRIFTS, showed that physisorbed water molecules were removed from the ceramic at about 105°C, whereas strongly bound molecules of water and structural hydroxyls were held to ≤500°C. Dilatometry revealed a marked contraction of the ceramic between 200°C and 330°C which corresponded to loss of strongly bound molecules of water. The VT‐DRIFTS also showed that the interaction of water molecules with the ceramic body following reheating occurred in two stages and confirmed the kinetic law previously derived from mass gain and moisture expansion in fired clay ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.