Abstract

Cross-dehydrogenative coupling (CDC) of hydrosilanes with hydroxyl groups, using alkali metal hexamethyldisilazide as a single-component catalyst for the formation of Si–O bonds under mild condition, is reported. The potassium salt [KN(SiMe3)2] is highly efficient and chemoselective for a wide range of functionalized alcohols (99 % conversion) under solvent-free conditions. The CDC reaction of alcohols with silanes exhibits first-order kinetics with respect to both catalyst and substrate concentrations. The most plausible mechanism for this reaction suggests that the initial step most likely involves the formation of an alkoxide followed by the formation of metal hydride as active species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call