Abstract

We have been exploring various new catalyst systems for the utilization of carbon dioxide as a soft oxidant in the catalytic dehydrogenation of ethylbenzene (EB) to styrene. The utilization of CO2 as a soft oxidant for the commercially important catalytic dehydrogenation of EB to styrene has received enormous attention recently due to its several attractive features. This review summarizes the results of our most recent findings on zirconia-based composite oxide catalyst systems exploited for this reaction. Under this systematic and comprehensive investigation various zirconia-based composite oxide catalysts namely, TiO2-ZrO2, MnO2-ZrO2, CeO2-ZrO2, K2O/TiO2-ZrO2, B2O3/TiO2-ZrO2 and CeO2-ZrO2/SBA-15 have been synthesized, characterized by various techniques and evaluated for the title reaction. Most of these composite oxide catalysts were found to exhibit very interesting physicochemical characteristics and exceptionally better catalytic properties for this reaction. As revealed by characterization results, a large number of acid–base sites with moderate strength are essential for a high conversion and product selectivity of this reaction with CO2 as the soft oxidant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call