Abstract

The detailed mechanisms of the dehydrogenation of benzyl alcohol with N2O as the hydrogen acceptor catalyzed by the rhodium(i) carbene complex for the formation of the corresponding carboxylic acid or ester have been investigated via density functional theory (DFT) calculations at the M06 level of theory. Three cycles were considered for the formation of benzaldehyde, benzyl benzoate and benzoic acid. On the basis of the calculations, the rate-determining step for these three cycles is involved in N2O activation by the rhodium ammine hydride complex with an activation barrier of only 22.6 kcal mol-1, which is different from the previous mechanism proposed by Gianetti and co-workers, where the hydride is transferred from the Rh atom to the oxygen atom of N2O with a barrier of 30.5 kcal mol-1. In addition, the calculations also demonstrated that one more N2O is necessary to give benzoic acid, and the reaction can only take place under anhydrous conditions. Present calculations are in good agreement with the experimental observations and provide new insights into the dehydrogenation of benzyl alcohol with N2O as the hydrogen acceptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.