Abstract

Very little has been known of the biochemical function of a human adrenocortical carcinoma cell line, SW-13. In this study, the production of several adrenal steroids and 3', 5'-cyclic adenosine monophosphate (cAMP) were investigated in this cell line. The cells were incubated in L-15 medium containing 0.1% bovine serum albumin with several reagents in an atmosphere of 5% CO2 and 95% air for 2 hours at 37 degrees C. Aldosterone (Ald), corticosterone (B), cortisol (F), dehydroepiandrosterone sulfate (DHEA-S) and cAMP were simultaneously assayed by specific radioimmunoassays in the medium and cells. Significant increases in cAMP production were observed by cholera toxin (10 ng/ml) and forskolin (10 nM), both direct stimulators of adenylate cyclase, in the cAMP concentration without an increase in the steroids. The DHEA-S concentration in the medium was significantly increased by angiotensin-II (10(-7)M), noradrenalin (3 X 10(-5) M), adrenalin (3 X 10(-5) M) or alpha-melanocyte-stimulating hormone (alpha-MSH, 10(-7) M), none of which was associated with cAMP production. Neither adrenocorticotropin (10(-10) M) nor human chorionic gonadotropin (500 mIU/ml) stimulated the release of the steroids or cAMP production. A calcium ionophore, A23187 (10(-7) M), and 12-O-tetradecanoylphorbol-13-acetate (10(-8) M), a direct stimulator of protein kinase C, stimulated the release of DHEA-S, but not those of Ald, B and F. The results suggest that SW-13 retains functioning adenylate cyclase which, however, is not linked with steroidogenesis and that DHEA-S is produced probably by the mechanisms which involve protein kinase C system or calcium ion. This report provides the first demonstration of cAMP and DHEA-S production in SW-13 and suggests that this cell line is potentially useful for investigating the mechanisms of steroidogenesis in the human adrenal cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.