Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age and also an important metabolic disorder associated with insulin resistance (IR). Hyperandrogenism is a key feature of PCOS. However, whether hyperandrogenism can cause IR in PCOS remains largely unknown. The mammalian target of rapamycin complex 1 (mTORC1) and its regulated autophagy are closely associated with IR. In the present study, we investigated the role of mTORC1-autophagy pathway in skeletal muscle IR in a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. DHEA-treated mice exhibited whole-body and skeletal muscle IR, along with the activated mTORC1, repressed autophagy, impaired mitochondria, and reduced plasma membrane glucose transporter 4 (GLUT4) expression in skeletal muscle of the mice. In cultured C2C12 myotubes, treatment with high dose testosterone activated mTORC1, reduced autophagy, impaired mitochondria, decreased insulin-stimulated glucose uptake, and induced IR. Inhibition of mTORC1 or induction of autophagy restored mitochondrial function, up-regulated insulin-stimulated glucose uptake, and increased insulin sensitivity. On the contrary, inhibition of autophagy exacerbated testosterone-induced impairment. Our findings suggest that the mTORC1-autophagy pathway might contribute to androgen excess-induced skeletal muscle IR in prepubertal female mice by impairing mitochondrial function and reducing insulin-stimulated glucose uptake. These data would help understanding the role of hyperandrogenism and the underlying mechanism in the pathogenesis of skeletal muscle IR in PCOS.

Highlights

  • Polycystic ovary syndrome (PCOS) is the most common endocrinopathy characterized by menstrual irregularity, hyperandrogenism, and polycystic ovarian morphologic features

  • Our findings suggest that the mammalian target of rapamycin complex 1 (mTORC1)-autophagy pathway might contribute to androgen excessinduced skeletal muscle insulin resistance (IR) in prepubertal female mice by impairing mitochondrial function and reducing insulin-stimulated glucose uptake

  • We aimed to investigate the possible role for mTORC1 and autophagy in skeletal muscle IR in a PCOS mouse model induced by DHEA

Read more

Summary

Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy characterized by menstrual irregularity, hyperandrogenism, and polycystic ovarian morphologic features. It affects 6–10% of women of reproductive age [1] and is the most common cause of anovulatory infertility. PCOS involves metabolic abnormalities,such as obesity and dyslipidemia. One of its most important clinical features is insulin resistance (IR), which has been associated with increased risk for type 2 diabetes mellitus (T2D) [2, 3]. IR occurs in 44–85% of women of PCOS [4] and appears to be independent of obesity in PCOS patients. The pathogenesis of IR in PCOS patients remains unknown.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call