Abstract

Dehydroepiandrosterone (DHEA) and its sulfate ester are the most abundant circulating adrenal steroids in humans. Administration of DHEA has been reported to have beneficial effects on obesity, hyperlipidemia, diabetes, and atherosclerosis in obese rodents, although its effects on insulin resistance have not been fully elucidated. In this study, the effects of DHEA treatment on insulin sensitivity were investigated in genetically obese Zucker rats, an animal model of insulin resistance, using the euglycemic clamp technique. After 0.4% DHEA was administered for 10 days to female obese Zucker rats aged 16 weeks, body weight and plasma insulin decreased and glucose disposal rate (GDR), which was normally reduced in obese rats, rose significantly compared with age- and sex-matched control obese rats. On the other hand, although the pair-fed obese rats also showed levels of weight reduction similar to those of DHEA-treated rats, the increase in GDR of DHEA-treated rats was significantly greater than in pair-fed rats, suggesting a direct ameliorating effect of DHEA on insulin sensitivity of obese rats. Serum concentration of tumor necrosis factor (TNF)-α, one of cytokines causing insulin resistance, was also reduced significantly in DHEA-treated, but not in pair-fed obese rats. In conclusion, our results suggest that DHEA treatment reduces body weight and serum TNF-α independently, and that both may ameliorate insulin resistance in obese Zucker fatty rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.