Abstract

We have previously shown that axonal growth from a subset of sensory neurons was promoted by keratinocytes when the two cell types were co-cultured in a low calcium medium. This phenomenon involves the production of one or several diffusible factors. Here we show that the neuritogenic effect of keratinocytes was significantly reduced in the case of rat primary sensory dorsal root ganglion (DRG) neurons, or completely suppressed in the case of the sensory neuron cell line ND7-23, when the activity of neurotrophin receptors (Trk receptors) was blocked with K252a. This trophic effect apparently involved the activation of tyrosine kinase receptors A and B (TrkA and TrkB) expressed by subpopulations of small- to medium-sized DRG neurons, or only of TrkA receptors in the case of ND7-23 neurons. A residual neurite growth promoting effect of keratinocytes persisted in a fraction of DRG neurons after Trk receptor blockade. This effect was mimicked by the steroid dehydroepiandrosterone (DHEA) but not by other steroids such as pregnenolone, progesterone or 17β-estradiol. The use of pharmacological agents which inhibit different steps of steroidogenesis indicated that DHEA was probably synthesized from cholesterol in keratinocytes. Our results strongly suggest that DHEA might act as a neurotrophic signal derived from keratinocytes to promote axonal outgrowth from a subpopulation of sensory neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call