Abstract
Nanocrystalline MgO aerogels possess high surface areas and outstanding reactivity with respect to variety of harmful organic substances. The catalytic activity of MgO aerogels in dehydrochlorination of 1-chlorobutane substantially increases with time due to partial MgO conversion to MgCl2. This catalytic activity increase and surface area decrease indicate that more active catalytic sites are formed on the surface during this reaction. The catalytic activity was found to increase significantly during the 1-chlorobutane dehydrochlorination reaction, which is accompanied by the MgO modification with chloride ions. The activation energy of this reaction over partially chlorinated MgO was found to be equal to 135 kJ/mol at T 225 °C. For the first time the concentrations of electron-acceptor sites were measured during a catalytic reaction. No electron-acceptor sites were observed on the surface of initial AP–MgO samples. They appeared only during the reaction. A good correlation was observed between the catalytic activity and the concentration of weak electron-acceptor sites tested using perylene. The obtained results indicate that they may be the active sites accounting for 1-chlorobutane dehydrochlorination in the active state of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.