Abstract

The field relations from a quarry at Nuliyam, South India, illustrate dehydration of an amphibolite facies gneiss to granulite facies charnockite by CO2 influx, over a scale of 30 m. Both the calc-silicate source of the fluids and the full extent of their penetration into the gneiss are preserved in a continuous section. Fluid flow is by a hydraulic fracture mechanism, but is thought to be pervasive. The sharp reaction front predicted by the continuum mechanical theory for advective fluid transport is not observed. The front spreading is on too large a scale for either diffusive or dispersive control and is due to local kinetic disequilibrium between the fluid and rock, although the divariant nature of the reaction may also have a limited effect. The time-integrated fluid flux varies from the instantaneous porosity at the fluid front to 20 vol. % adjacent to the calc-silicate. Carbon isotope budgets suggest that decarbonation of the calc-silicate by a Rayleigh fractionation process provides a sufficient source for the CO2 influxing into the gneiss. Graphite abundances vary from 0.01 to 0.1% (by weight), it is principally derived by precipitation from the fluid and may be modelled from phase equilibria. Carbon isotope fronts coincide with the reaction front on the scale of sampling, although isotopic disequilibrium between graphite and inclusion-CO2 also implies local fluid-rock disequilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call