Abstract

Stability and release properties of CO2-α-cyclodextrin complex powder prepared by solid encapsulation (water activity, aw ≈ 0.95) followed by moisture removal using silica gel and CaCl2 desiccants during post-dehydration were investigated. The results showed that CaCl2 reduced aw much faster than silica gel did under the same conditions. After approximately 60 h, aw of complex powders reduced using silica gel was almost constant at 0.247 (±0.012), while those treated with CaCl2, aw was 0.225 (±0.005) and had not yet reached their lowest value. Moisture adsorption by silica gel and CaCl2 also led to a decrease in the CO2 concentration of complex powder (higher decrease for silica gel adsorption) without affecting the structure and morphology of complex powder. The CO2 release properties of CaCl2-aw-reduced complex powder at different relative humidities (32.73, 52.86, 75.32 and 97.30% RH), liquid environments (water and oil) and packaging methods (normal and vacuum) were also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call