Abstract

Dehydration melting of metasupracrustal rocks at mid- to deep-crustal levels can generate water undersaturated granitic melt. In this study, we evaluate the potential of ∼1.89–1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86–1.79 Ga late-orogenic leucogranites in the region, using the Rhyolite-MELTS approach. Melt close in composition to leucogranite is produced over a range of realistic pressures (5 to 8 kbar) and temperatures (800 to 850 °C), at 20%–30% of partial melting, allowing separation of melt from unmelted residue. The solid residue is a dry, enderbitic to charnoenderbitic ganulite depleted in incompatible components, and will only yield further melt above 1 000–1 050 °C, when rapidly increasing fractions of increasingly calcic (granodioritic to tonalitic) melts are formed. The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic, A-type rapakivi granites on further heating. The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes, involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call