Abstract

Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.

Highlights

  • Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic

  • Several mechanisms have been proposed to explain the mechanics of these earthquakes, which take place under pressure and temperature conditions at which rocks are supposed to yield plastically rather than to behave in a brittle manner: (1) dehydration-embrittlement of antigorite[2,4,5,6], the main hydrous mineral present in the subducted plate and one of the most important water carriers in a subduction-zone environment, (2) quasi-adiabatic shear-heating instabilities[7,8], (3) reactivation of pre-existing shear zones[9] or (4) a combination of these

  • Experiments performed on serpentinites up to 6 gigapascals (GPa) confining pressure, relying on acoustic emissions (AEs) as a proxy for dynamic shear fracture propagation, showed contrasting results regarding dehydrationinduced seismicity

Read more

Summary

Introduction

Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Acoustic emissions (AEs) occurred from samples with antigorite contents, as low as 5 vol% and with up to 50 vol%, deformed at pressures of 1.1 and 3.5 GPa, respectively (Figs 2 and 3).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call