Abstract

The dehydration behavior of caesium dihydrogen phosphate CsH2PO4 was investigated in the temperature range of 230 °C to 260 °C under high humidity, conditions of particular relevance to the operation of fuel cells based on this electrolyte. The onset temperature of dehydration was determined from changes in ionic conductivity on heating and confirmed by weight change measurements under isothermal conditions. The relationship between the onset temperature of dehydration (Tdehy) and water partial pressure (pH2O) was determined to be log(pH2O/atm = 6.11(±0.82) − 3.63(±0.42) × 1000/(Tdehy/K), from which the thermodynamic parameters of the dehydration reaction from CsH2PO4 to CsPO3 were evaluated. The dehydration pathway was then probed by X-ray powder diffraction analysis of the product phases and by thermogravimetric analysis under slow heating. It was found that, although the equilibrium dehydration product is solid caesium metaphosphate CsPO3, the reaction occurs via two overlapping steps: CsH2PO4 → Cs2H2P2O7 → CsPO3, with solid caesium hydrogen pyrophosphate, Cs2H2P2O7, appearing as a kinetically favored, transient phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.