Abstract
High temperatures and low water availability often strike organisms concomitantly. Observing how organisms behaviorally thermohydroregulate may help us to better understand their climatic vulnerability. This is especially important for tropical forest lizards, species that are purportedly under greater climatic risk. Here, we observed the influence of hydration level on the Voluntary Thermal Maximum (VTmax) in two small Amazonian lizard species: Loxopholis ferreirai (semiaquatic and scansorial) and Loxopholis percarinatum (leaf litter parthenogenetic dweller), accounting for several potential confounding factors (handling, body mass, starting temperature and heating rate). Next, we used two modeling approaches (simple mapping of thermal margins and NicheMapR) to compare the effects of dehydration, decrease in precipitation, ability to burrow, and tree cover availability, on geographic models of climatic vulnerability. We found that VTmax decreased with dehydration, starting temperature, and heating rates in both species. The two modeling approaches showed that dehydration may alter the expected intensity, extent, and duration of perceived thermal risk across the Amazon basin for these forest lizards. Based on our results and previous studies, we identify new evidence needed to better understand thermohydroregulation and to model the geography of climatic risk using the VTmax.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.