Abstract

This chapter deals with Dehn twists, the simplest infinite-order elements of Mod(S). It first defines Dehn twists and proves that they are nontrivial elements of the mapping class group. In particular, it considers the action of Dehn twists on simple closed curves. As one application of this study, the chapter proves that if two simple closed curves in Sɡ have geometric intersection number greater than 1, then the associated Dehn twists generate a free group of rank 2 in Mod(S). It also proves some fundamental facts about Dehn twists and describes the center of the mapping class group, along with algebraic relations that can occur between two Dehn twists. Finally, it explores three geometric operations on a surface that each induces an algebraic operation on the corresponding mapping class group: the inclusion homomorphism, the capping homomorphism, and the cutting homomorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.