Abstract

Abstract The Dehn function measures the area of minimal discs that fill closed curves in a space; it is an important invariant in analysis, geometry, and geometric group theory. There are several equivalent ways to define the Dehn function, varying according to the type of disc used. In this paper, we introduce a new definition of the Dehn function and use it to prove several theorems. First, we generalize the quasi-isometry invariance of the Dehn function to a broad class of spaces. Second, we prove Hölder extension properties for spaces with quadratic Dehn function and their asymptotic cones. Finally, we show that ultralimits and asymptotic cones of spaces with quadratic Dehn function also have quadratic Dehn function. The proofs of our results rely on recent existence and regularity results for area-minimizing Sobolev mappings in metric spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call