Abstract

In the first part of this paper the main principles which control the dehalogenation of polychlorinated aromatic compounds on municipal waste incineration fly ash (MWI-FA) have been discussed and the model fly ash of similar dehalogenation activity has been proposed. Even if both systems show comparable dehalogenation properties, the main question concerning the postulated identical reaction mechanism in both cases is left unanswered. The other very important point is to what extent is this dechlorination mechanism thermodynamically controlled. The same problem is often discussed in the literature also for the de novo synthetic reactions. From the data it is clear that metallic copper plays a decisive role in the mechanism of the dehalogenation reaction. Although the results reported in the first part strongly support the idea that copper acts in this dechlorination as the reaction component, in contrast to its generally accepted catalytic behaviour, we believed that additional support for this conclusion can be obtained with the help of a thermodynamic interpretation of the mechanism of the reaction. The pathways of hexachlorobenzene dechlorination on MWI-FA and model fly ash were studied in a closed system at 260-300 degrees C under nitrogen atmosphere. These pathways were the same for both systems, with the following prevailing sequences: hexachlorobenzene --> pentachlorobenzene --> 1,2,3,5-tetrachlorobenzene --> 1,3,5-trichlorobenzene --> 1,3-dichlorobenzene. Thermodynamic calculations were carried out by using the method of minimization total Gibbs energy of the whole system. In the calculations, the following reaction components were taken into account: all gaseous chlorinated benzenes, benzene, hydrogen chloride, a gaseous trimer Cu3Cl3, and also Cu2O and CuCl2 as solid components. The effect of the reaction temperature and the amount of copper and water vapour were considered as well. The effect of reaction temperature was determined from the data calculated for the 500 to 750 K temperature region. The effect of the initial composition was determined for the molar amounts of copper = 0.01-3 moles and water vapour = 0.2 to 3 moles per mole of chlorobenzene isomer The results of hexachlorobenzene dechlorination by MWI-FA and model fly ash under comparable reaction conditions allow us to conclude that both dechlorinations proceed via the same dechlorination pathways, which can be taken as an evidence of the identical dehalogenation mechanism for both systems. The relative percentual distribution of the dehalogenated products depends on the temperature, but not on the initial amount of water vapour or copper metal. On the other hand, the initial amount of copper substantially affects the conversion of the dehalogenation as well as the molar ratio of Cu3Cl3 to HCl in the equilibrium mixture. Comparison of the experimental with thermodynamic results supports the idea that dehalogenation reactions are thermodynamically controlled. Thermodynamic analysis of the dehalogenation reactions may prove useful for a wide range of pollutants. The calculations concerning polychlorinated biphenyls and phenols are under study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.