Abstract

We investigated if deguelin, a naturally occurring rotenoid, was able to inhibit nuclear factor kappa B (NF-kappaB)-binding protein (IkappaBalpha) expression and to induce apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells in vitro. Deguelin-induced cell death in the majority of B-CLL cells and was found to be more toxic toward B-CLL cells than to the normal mononuclear or B-cells, suggesting selectivity towards the malignant cells. Deguelin was found to reduce IkappaBalpha protein expression, and thus interacts with the NFkappaB pathway. The induced apoptosis was characterized by processing of caspase-9 and -3 and poly-(ADP)-ribose-polymerase cleavage. Exposure of B-CLL cells to deguelin resulted in Bcl2-associated protein (Bax) conformational changes and downregulation of the key survival protein myeloid cell leukemia sequence 1 (Mcl-1), which is associated with response to treatment in B-CLL patients. Deguelin retained its ability to induce apoptosis in B-CLL cells in the presence of interleukin-4, a pro-survival cytokine in B-CLL, and when cultured with 50% human serum. These data indicate that deguelin is able to induce apoptosis in B-CLL cells in the presence of pro-survival signals and thus merits further investigation for clinical application either as a single agent or in combination with other anticancer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call