Abstract
Full-duplex (FD) cellular networks are considered in which an FD base station (BS) simultaneously supports a set of half-duplex (HD) downlink (DL) users and a set of HD uplink (UL) users. The transmitter and the receiver of the BS are equipped with reconfigurable antennas, each of which can choose its transmit or receive mode from several preset modes. Under the no self-interference assumption arisen from an FD operation at the BS, the sum degrees of freedom (DoF) of FD cellular networks is investigated for both no channel state information at the transmit side (CSIT) and the partial CSIT. In particular, the sum DoF is completely characterized for the no CSIT model and an achievable sum DoF is established for the partial CSIT model, which improves the sum DoF of the conventional HD cellular networks. For both no CSIT and partial CSIT models, the results show that the FD BS with reconfigurable antennas can double the sum DoF even in the presence of user-to-user interference as both the numbers of DL and UL users and preset modes increase. It is further demonstrated that such DoF improvement indeed yields the sum rate improvement at the finite and operational signal-to-noise ratio regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.