Abstract

In [3], Martin computed the degrees of certain classes of RE sets. To state the results succinctly, some notation is useful.If A is a set (of natural numbers), dg(A) is the (Turing) degree of A. If A is a class of sets, dg(A) = {dg(A): A ∈ A). Let M be the class of maximal sets, HHS the class of hyperhypersimple sets, and DS the class of dense simple sets. Martin showed that dg(M), dg(HHS), and dg(DS) are all equal to the set H of RE degrees a such that a′ = 0″.Let M* be the class of coinfinite RE sets having no superset in M; and define HHS* and DS* similarly. Martin showed that dg(DS*) = H. In [2], Lachlan showed (among other things) that dg(M*)⊆K, where K is the set of RE degrees a such that a″ > 0″. We will show that K ⊆ dg (HHS*). Since maximal sets are hyperhypersimple, this gives dg(M*) = dg (HHS*) = K.These results suggest a problem. In each case in which dg(A) has been calculated, the set of nonzero degrees in dg(A) is either H or K or the empty set or the set of all nonzero RE degrees. Is this always the case for natural classes A? Natural here might mean that A is invariant under all automorphisms of the lattice of RE sets; or that A is definable in the first-order theory of that lattice; or anything else which seems reasonable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call