Abstract

A degree-constrained graph orientation of an undirected graph G is an assignment of a direction to each edge in G such that the outdegree of every vertex in the resulting directed graph satisfies a specified lower and/or upper bound. Such graph orientations have been studied for a long time and various characterizations of their existence are known. In this paper, we consider four related optimization problems introduced in reference (Asahiro et al. LNCS 7422, 332---343 (2012)): For any fixed non-negative integer W, the problems MAX W-LIGHT, MIN W-LIGHT, MAX W-HEAVY, and MIN W-HEAVY take as input an undirected graph G and ask for an orientation of G that maximizes or minimizes the number of vertices with outdegree at most W or at least W. As shown in Asahiro et al. LNCS 7422, 332---343 (2012)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.