Abstract
The paper computes the Brouwer degree of some classes of homogeneous polynomials defined on quaternions and applies the results, together with a continuation theorem of coincidence degree theory, to the existence and multiplicity of periodic solutions of a class of systems of quaternionic valued ordinary differential equations. This article is part of the theme issue 'Topological degree and fixed point theories in differential and difference equations'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.