Abstract

Imatinib and nilotinib interact with ABCB1 and ABCG2. However, whether they are substrates or inhibitors is a source of conjecture. Here, in vitro, Bcr–Abl kinase inhibition was used to elucidate the impact of ABCB1/ABCG2 overexpression on imatinib and nilotinib transport. High levels of ABCB1 protein in K562-Dox cells resulted in a significantly increased 50% inhibitory concentration (IC50) compared with parental K562 cells for imatinib (IC50IM; 9 µM to 19 µM, p = 0.002) and nilotinib (IC50NIL; 345 nM to 620 nM, p = 0.013). This difference was abrogated by ABCB1 inhibitors. However, overexpression of ABCG2 did not significantly increase IC50IM or IC50NIL or significantly decrease IC50 upon ABCG2 inhibition. Inhibition of ABCB1 but not ABCG2 resulted in a substantial increase in intracellular nilotinib when used at 150 nM but no increase when used at 2 µM. Imatinib and nilotinib appear to be transported by ABCB1 but do not interact strongly with ABCG2. Furthermore, ABCB1 efflux of nilotinib may be concentration-dependent with transport occurring at clinically relevant concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.