Abstract

The first aim of this study was to determine whether there is a difference in degree of conversion (DC) of touch-cure cements polymerized by self-curing with adhesive or dual-curing under reduced light. The second aim was to compare interfacial adaptation of zirconia restoration cemented using touch-cure cements self-cured or dual-cured by reduced light. The DC of touch-cure resin cements with adhesive was measured continuously using Fourier transform infrared spectrometry. Experimental groups differed depending on touch-cure cement. Each group had three subgroups of polymerization method. For subgroup 1, the DC was measured by self-curing. For subgroups 2 and 3, the DCs were measured by dual-curing with reduced light penetrating 3mm and 1mm zirconia blocks, respectively. For interfacial adaptation evaluation, Class I cavity was prepared on an extracted third molar, and zirconia restoration was fabricated. The restoration was cemented using the same cement. Groups and subgroups for interfacial adaptation were the same as those of the DC measurement. After thermo-cycling, interfacial adaptation at the tooth-restoration interface was evaluated using swept-source optical coherence tomography imaging. The DC of touch-cure cement differed depending on the measurement time, resin cement, and polymerization method (p < 0.05). Interfacial adaptation was different depending on the resin cement and polymerization method (p < 0.05). For touch-cure cement, light-curing with higher irradiance presented a higher DC and superior interfacial adaptation than light-curing with lower irradiance or self-curing. Although some adhesives accelerate the self-curing of touch-cure cement, light-curing for touch-cure cement is necessary for zirconia cementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call